Abstract

Highly optically transparent polycrystalline fluorapatite ceramics with hexagonal crystal structures were fabricated via a liquid-phase synthesis of fluorapatite powder, followed by spark plasma sintering (SPS). The effect of sintering temperature, as observed using a thermopile, on the optical transmittance and microstructure of the ceramics was investigated in order to determine suitable sintering conditions. As a result, high optical transmittance was obtained in the SPS temperature range of 950-1100 °C. The highest optical transmittance was obtained for the ceramic sample sintered at 1000 °C, and its average grain size was evaluated at only 134 nm. The grain size dramatically increased with temperature, and the ceramics became translucent at SPS temperatures above 1200 °C. The mechanical and thermal properties of the ceramics were measured to evaluate the thermal shock parameter, which was found to be comparable to or slightly smaller than that of single-crystal fluorapatite. This transparent polycrystalline fluorapatite ceramic material should prove useful in a wide range of applications, for example as a biomaterial or optical/laser material, in the future. Furthermore, the knowledge obtained in this study should help to promote the application of this ceramic material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.