Abstract

This paper investigates the spatiotemporal characteristics and life-cycle of movements within the Joshimath landslide-prone slope over the period from 2015 to 2024, utilizing multi-sensor interferometric data from Sentinel‑1, ALOS‑2, and TerraSAR‑X satellites. Multi-temporal InSAR analysis before the 2023 slope destabilization crisis, when the region experienced significant ground deformation acceleration, revealed two distinct deformation clusters within the eastern and middle parts of the slope. These active deformation regions have been creeping up to −200 mm/yr. Slope deformation analysis indicates that the entire Joshimath landslide-prone slope can be categorized kinematically as either Extremely-Slow (ES) or Very-Slow (VS) moving slope, with the eastern cluster mainly exhibiting ES movements, while the middle cluster showing VS movements. Two episodes of significant acceleration occurred on August 21, 2019 and November 2, 2021, with the rate of slope deformation increasing by 20% (from −50 to −60 mm/yr) and around threefold (from −60 to −249 mm/yr), respectively. Following the 2023 destabilization crisis, the rate of ground deformation notably increased across all datasets for both clusters, except for the Sentinel‑1 ascending data in the eastern cluster. Pre-crisis, horizontal deformation was dominant both in the eastern and middle clusters. Horizontal deformation remained dominant and increased significantly in the eastern cluster post-crisis phase, whereas vertical deformation became predominant in the middle cluster. Wavelet analysis reveals a strong correlation between two acceleration episodes and extreme precipitation in 2019 and 2021, but no similar correlation was detected in other years. This indicates that while extreme rainfall significantly influenced the dynamics of slope movements during these episodes, less strong precipitation had a minimal impact on slope movements during other periods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.