Abstract

Various in vitro models are used for studying phenotypic modulation of vascular smooth muscle cells (VSMCs) and the established culture of vascular smooth muscle cells (cVSMCs) is most often used for this purpose. On the other hand, vascular interstitial cells (VICs) are native phenotypically modulated VSMCs present in blood vessels under normal physiological conditions. The aim of this work has been to compare the difference in expression of a number of VSMC-specific markers, which are commonly used for the characterisation of phenotypic modulation of VSMCs, between freshly dispersed VSMCs, VICs and cVSMCs from rat abdominal aorta. Our experiments show that VICs are present in the rat aorta and express markers of VSMCs. Both VICs and cVSMCs display the presence of sparse individual stress fibres enriched in alpha smooth muscle actin (αSM-actin), whereas in VSMCs, this protein is more densely packed. Compared with contractile VSMCs, both VICs and cVSMCs display decreased expression of VSMC-specific markers such as smoothelin, myosin light chain kinase and SM22α; however, the expression of two major cytoskeletal and contractile proteins (smooth muscle myosin heavy chain and αSM-actin) was downregulated in cVSMCs but not in VICs compared with contractile VSMCs. These results suggest different mechanisms for the phenotypic modulation of cVSMCs and VICs. VICs might therefore represent a novel convenient model for studying molecular mechanisms that govern the phenotypic modulation of VSMCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.