Abstract
Brake blocks are usually made from asbestos, metals and ceramics. It has been realised that asbestos discharges dangerous gases which can be harmful. This problem necessitated the search for human-friendly materials. Therefore, this paper studies the production and characterization of train brake blocks produced from clay reinforced with aluminum dross. This was done by producing samples of composite using clay from a deposit at Osiele and aluminum dross from Tower Rolling Mill Otta, both in Ogun state. The percentage composition of aluminum dross was varied from 0% to 25% to produce brake samples. Their wear rate, tensile strength, compressive strength, hardness, thermal conductivity and microstructure were analysed. The results from this project such as Ultimate tensile strength (UTS) of 7.4Mpa, Impact energy 6.92J, Hardness 28.8 HV, wear rate 0.0071g/sec and thermal conductivity of 0.01075 indicate that, with 5% aluminium dross it is possible to develop brake block that exhibits property recommended by Rail Industry Safety and Standard Board (RISSB).
 Keywords: Train, Brake blocks, Clay composite, Aluminum Dross, Mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.