Abstract

The titanium surfaces containing calcium, phosphate ions and the carbonate apatite were characterized. The effect of surface chemistry on the initial rabbit osteoblast response on these surfaces was investigated. The cell count and alkaline phosphatase (ALP) specific activity assay were used for biochemical analyses. Scanning electron microscopy was used for morphology observation and in particular X-ray photoelectron spectroscopy (XPS) for surface chemistry characterization. The number of cells adhering to the apatite coating surface was the maximum, the number of cells on the surface containing calcium without phosphate ions was higher than that containing phosphate without calcium, and the number on the unmodified titanium surface was the least. The osteoblasts cultured on the apatite surface exhibited the highest ALP specific activity, next were the ones on the surface containing solely calcium, the lowest were on the unmodified titanium surface. On the substrate surfaces removed of adhered cells, the order of nitrogen amounts detected by XPS was consistent with ones of ALP specific activity and cell number, except for the unmodified titanium surface. For the substrate surfaces removed of adhered osteoblasts, XPS analysis showed that calcium and phosphorous amounts decreased during cell adhesion. After cell culture the Ca2p binding energy (BE) values for apatite coating and the surface containing solely calcium were similar to those of the two surfaces adsorbed bovine serum albumin (BSA). The P2p BE values for the surfaces containing phosphate ions, including the apatite coating and the surface containing solely phosphate ions, showed the same change. But after cell culture the decrease of the P2p BE value for the coating surface was larger than the one for the surface containing solely phosphate ions. Considering the bovine serum albumin adsorption on the same samples, these results indicated that calcium ions on titanium surfaces play a more important role than phosphate ions in initial interactions among culture medium, osteoblasts and titanium surfaces. On the apatite coating surface, calcium ions are active sites for osteoblast adhesion, while calcium and phosphate ions co-exist on titanium surfaces, the former promotes the osteoblast adhesion onto the phosphate sites on titanium surfaces. The cell adhesion was a complicated biological and chemical process relating to surface several elements similar to protein adsorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.