Abstract
Ticlopidine is an anti-platelet drug that inhibits platelet aggregation via the functional alteration of platelet membranes. However, the mechanism underlying the adverse developmental effects of ticlopidine has not been clearly demonstrated. In this study, we evaluated the developmental toxicity and teratogenicity of ticlopidine on Xenopus laevis embryos and in human umbilical vein endothelial cells (HUVECs) using a frog embryo teratogenesis assay-Xenopus (FETAX) and blood and lymph vessel formation assays. Ticlopidine induced teratogenicity and inhibited growth, as evidenced by mortality rates and embryo lengths, respectively. Moreover, ticlopidine induced severe hemorrhages and inhibited both blood and lymph vessel formation by modulating the expression of xMsr and Prox1 in Xenopus embryos. Additionally, Nkx2.5 and Cyl104 levels were perturbed by ticlopidine exposure, and more extensive aberrations were observed in the liver and heart using whole-mount in situ hybridization. In addition, ticlopidine reduced branching in HUVECs by blocking the effect of the angiogenic vascular endothelial growth factor (VEGF). Results from this study suggest that ticlopidine is a developmental toxicant and teratogen and therefore this is a step forward in our understanding of the effects of ticlopidine during developmental processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.