Abstract

Tibetan kefir grain as the starter of milk fermentation has been applied as functional food with many bioactive characteristics. In this study, the milk whey product (TKG-MW) was obtained through the milk fermentation of Tibetan kefir grain containing the dominant Lactobacillus, Acetobacter, and Bacillus after 3 and 6 days of cultivation. Antioxidant, anti-inflammatory, and melanogenesis inhibition capacities under TKG-MW treatment were analyzed. Results revealed that the antioxidation of TKG-MW at 6 days of fermentation was higher than that at 3 days of fermentation according to the DPPHand ABTS+ radical scavenging analysis. However, the anti-inflammation of TKG-MW was only observed at 6 days of fermentation by using lipopolysaccharide-stimulated RAW 264.7 macrophages. The inhibition of mushroom tyrosinase activity by TKG-MW was demonstrated. The decrease of melanin content was verified using α-melanocyte-stimulating hormone-stimulated B16-F10cell. The real-time quantitative reverse transcription polymerase chain reaction result indicated that the mRNA levels of Tyr, Trp-1, and Trp-2 of the B16cell involved in melanin synthesis were down-regulated over a two-fold change by the TKG-MW treatment. Additionally, the protein expressions of Tyr, Trp-1, Trp-2, and Mitf of the B16cell were reduced with the TKG-MW treatment. Organic acids, such as lactic acid, succinic acid, 3-phenyllactic acid, l-pyroglutamic acid, and malic acid, were identified by liquid chromatography-mass spectrometry in TKG-MW and were found to significantly inhibit tyrosinase activity. To the best of our knowledge, this work is the first to report melanogenesis suppression by TKG-MW. Results suggested that the fermentation product of TKG could be applied as a depigmenting agent in food and cosmetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call