Abstract

Achieving sustainable management and efficient use of natural resources stands out as one of the goals included in the Goals for Sustainable Development in the 2030 Agenda. The construction sector is currently far from presenting an efficient model in terms of treating waste generated by it. Variations in the physical and chemical properties of recycled aggregates coming from construction and demolition waste are one of the main reasons of their limited use in the production of construction materials. This research presents a physicochemical characterization of three different types of recycled aggregates coming from different types of waste: concrete, ceramic and mixed. Physical characterization shows that recycled concrete aggregate has better physical properties compared with mixed recycled aggregate and ceramic recycled aggregate, which makes it more suitable for use in masonry mortars and concrete, due to its higher dry density (2210.33 kg/m3), its lower content of fines (5.17%), its lower friability coefficient (24.60%), and its water absorption coefficient (6.70%). Chemical characterization shows that none of the tested recycled aggregates contains traces of harmful chemical agents that exceed the limits established by the reference regulations. Finally, the statistical analysis shows good homogeneity for these raw materials, obtaining low coefficients of variation and values within the recommended in each of the calculated confidence intervals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call