Abstract

BackgroundCell lines constitute a powerful model to study cancer, and here we describe three new epithelial ovarian cancer (EOC) cell lines derived from poorly differentiated serous solid tumors (TOV-1946, and TOV-2223G), as well as the matched ascites for one case (OV-1946).MethodsIn addition to growth parameters, the cell lines were characterized for anchorage independent growth, migration and invasion potential, ability to form spheroids and xenografts in SCID mice.ResultsWhile all cell lines were capable of anchorage independent growth, only the TOV-1946 and OV-1946 cell lines were able to form spheroid and produce tumors. Profiling of keratins, p53 and Her2 protein expression was assessed by immunohistochemistry and western blot analyses. Somatic TP53 mutations were found in all cell lines, with TOV-1946 and OV-1946 harboring the same mutation, and none harbored the commonly observed somatic mutations in BRAF, KRAS or germline BRCA1/2 mutations found to recur in the French Canadian population. Conventional cytogenetics and spectral karyotype (SKY) analyses revealed complex karyotypes often observed in ovarian disease.ConclusionThis is the first report of the establishment of matched EOC cell lines derived from both solid tumor and ascites of the same patient.

Highlights

  • Cell lines constitute a powerful model to study cancer, and here we describe three new epithelial ovarian cancer (EOC) cell lines derived from poorly differentiated serous solid tumors (TOV-1946, and TOV-2223G), as well as the matched ascites for one case (OV-1946)

  • The majority of EOCs are thought to arise from the ovarian surface epithelium (OSE) that is derived from the coelomic epithelium

  • We describe three new serous EOC cell lines that were derived in our laboratory from either solid tumors or ascites of two chemotherapy-naïve patients

Read more

Summary

Introduction

Cell lines constitute a powerful model to study cancer, and here we describe three new epithelial ovarian cancer (EOC) cell lines derived from poorly differentiated serous solid tumors (TOV-1946, and TOV-2223G), as well as the matched ascites for one case (OV-1946). Epithelial ovarian cancer (EOC) is often described as the silent killer or the disease that whispers mainly due to absence of symptoms. This combined with the lack of specific/sensitive markers and/or techniques of screening leads to the diagnosis at late stages of the disease in more than 70% of patients. OSE is composed of multipotent cells that can differentiate and give rise to tumors of different histopathology types [1,2] The latter are defined by the International Federation of Gynecology and Obstetrics (FIGO) [3] and represent serous, endometrioid, mucinous, clear cell, de Brenner, mixed and undifferentiated subtypes. EOC tumors are classified according to the spread of the disease varying from stage I when tumors are confined to the ovaries to stage IV when distant metastases are observed

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.