Abstract

The three-dimensional magnetic alignment (3DMA) is analytically investigated for magnetically biaxial particles with the susceptibility χ1>χ2>χ3 in an amplitude-modulated (AM) elliptic field B= i1Bb1cos ωt + i2Bb2sin ωt as a prototype method for 3DMA. The distribution function and the biaxial ordering matrix are numerically calculated by the Boltzmann distribution and the rotational diffusion equation. The 3DMA attains the optimum performance in the rapid rotation regime (RRR) with the infinity rotation frequency ω while the RRR is effectively available at lower rotation frequencies. The intermediate magnetization axis χ2 is inferior to the easy and hard magnetization axes χ1 and χ3 in the time development and the equilibrium state of alignment. In all the methods for 3DMA, the dynamic and equilibrium behavior in the RRR are universally characterized by the reduced energy α= V(Bb1)2(χ3 - χ1)/(2µ0kBT), the biaxial deviation of susceptibility k = (χ2-χ1)/(χ3-χ1), the field modulation factor q = (b2/b1)2, and the reduced time tr = | α| Dt where D is the rotational diffusion constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call