Abstract

Threading dislocations in aluminum nitride boules grown by physical vapor transport method were systematically studied via synchrotron x-ray topography (white beam and monochromatic) in conjunction with ray tracing simulations. Two major types of threading dislocations were observed in the c-axis-grown boules: threading screw dislocations (TSDs) and threading edge dislocations (TEDs) with Burgers vectors along the [0001] and \(\langle 11\bar{2}0 \rangle \) directions, respectively. TSDs were typically observed in the middle of the boule while TEDs were commonly observed to aggregate into arrays along the \( \langle 1\bar{1}00 \rangle \) and \( \langle 11\bar{2}0 \rangle \) directions in various parts of the boule on basal plane oriented wafers. By comparison with ray tracing simulations, the absolute Burgers vectors of both TSDs and TEDs in the arrays could be unambiguously determined. TEDs comprise over 90 % of all threading dislocations observed. The relationships between TED arrays and low angle grain boundaries and their possible formation mechanisms are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.