Abstract
This paper presents the results of a study of the microstructure and oxidation behavior of thermal barrier coating (TBC) with air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) top coat and CoNiCrAlY bond coat deposited using two different spraying techniques, low pressure plasma spray (LPPS) and cold spray (CS). The objective is to investigate the thermally grown oxide (TGO) thickness and oxide scale composition of TBC subjected to isothermal oxidation and creep tests at 900 °C by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectrometry (EDX) analyses in order to evaluate the reliability of the CS technique. It was found that the TGO thicknesses for TBC with CS bond coats were smaller and the TGO was composed of mainly alumina with little or no mixed oxides. TGO growth rate was also affected by the applied stress. Smaller TGO thicknesses were observed for the non-creep TBC for both CS and LPPS bond coats. Overall findings indicate that the oxidation behavior of the TBC with CS bond coat is superior compared to that of the TBC with LPPS bond coat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.