Abstract

In the present study, hydroxyapatite (HAP) coating along with HAP/TiO2 coating has been deposited by high-velocity flame spray (HVFS) technique onto 316LSS. Titania was used as a bond coat and HAP as top coat in HAP/TiO2 coating. The main aim of the study is to investigate the corrosion behavior of thermal spray coating of HAP and HAP/TiO2 on steel. Electrochemical corrosion testing was carried out using potentiodynamic polarization test. The corrosion behavior of bare and as-sprayed specimens was analyzed in simulated body fluid known as Hank’s solution. As-sprayed specimens along with corroded specimens were further characterized by XRD, SEM/EDS, and x-ray mapping analysis. It was observed that the HAP/TiO2 coating possessed higher microhardness (280 Hv) as compared to HAP coating (254 Hv). Surface roughness also got enhanced in case of HAP/TiO2 coating (9.35 μm) as compared to pure HAP coating (7.37 μm). The porosity of the HAP coating was found to be higher than the bond coating. It was observed that the Ca/P ratio almost resembled that of the natural bone composition. The corrosion resistance of steel increased after the deposition of HAP and HAP/TiO2 coatings. The maximum corrosion resistance was exhibited by HAP/TiO2 coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call