Abstract

Geosiphon pyriforme represents a photoautotrophic endosymbiosis of aGlomus-like fungus with the cyanobacteriumNostoc punctiforme. The fungus forms unicellular bladders of up to 2 mm in length and 0.5 mm in diameter growing on the soil surface and harboring the endosymbioticNostoc filaments. The cyanobacteria are located in a compartment (the symbiosome) bordered by a host membrane. The space between this symbiosome membrane (SM) and theNostoc cell wall is filled with an about 30–40 nm thick layer of amorphous material, which is present also in the regions of the symbiosome where noNostoc filaments are located. At these sites the amorphous material consists of a 20–30 nm thick layer separating the SM. The region between the SM and the cyanobacterium is defined as symbiosome space (SS). Fungal bladders, hyphae and free livingNostoc were analyzed by affinity techniques as well as the material occurring in the SS. FITC-coupled lectins with sugar specificity to α-D-mannosyl/α-D-glucosyl (Con A), N-acetyl-β-D-glucosamine oligomers (WGA), α-L-fucosyl (UEA-I), β-D-galactosyl (RCA-120), α-D-galactosyl (BS-I-B4), N-acetyl-α-D-galactosamine (HPA), and sialic acid (EBL) residues were tested. WGA binding and calcofluor white staining demonstrated that the bladder wall as well as the SS contain fibrillar chitin. Of the other lectins only Con A clearly labeled the symbiosome. On the contrary, the lectin binding properties of the slime produced by free livingNostoc-colonies indicate the presence of mannose, fucose, GalNAc, sialic acid, and galactose, while chitin or GlucNAc-oligomers could not be detected. The symbiosome was also investigated electron microscopically. WGA-gold binding confirmed the presence of chitin, while a slight PATAg reaction indicated some polysaccharidic molecules within the SS. Our results show that the amorphous material within the SS contains molecules typical of the fungal cell wall and suggest that the SM is related to the fungal plasma membrane. The applied lectins all bind to the hyphal surface, indicating a high molecular complexity. Mannosyl, β-galactosyl, and sialic acid residues are strongly exposed at the outer cell wall layer, whereas GlucNAc, GalNAc, and α-galactosyl residues seem to be present in smaller amounts. The symbiotic interface established between the fungus andNostoc inGeosiphon shows many similarities to that occurring between fungi and root cells in arbuscular mycorrhizas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.