Abstract

Proteins exhibiting hyper-variable sequences within a bacterial pathogen may be associated with host adaptation. Several lineages of the monophyletic pathogen Salmonella enterica serovar Typhi (S. Typhi) have accumulated non-synonymous mutations in the putative two-component regulatory system yehUT. Consequently we evaluated the function of yehUT in S. Typhi BRD948 and S. Typhimurium ST4/74. Transcriptome analysis identified the cstA gene, encoding a carbon starvation protein as the predominantly yehUT regulated gene in both these serovars. Deletion of yehUT had no detectable effect on the ability of these mutant Salmonella to invade cultured epithelial cells (S. Typhi and S. Typhimurium) or induce colitis in a murine model (S. Typhimurium only). Growth, metabolic and antimicrobial susceptibility tests identified no obvious influences of yehUT on these phenotypes.

Highlights

  • Enteric bacteria have evolved a complex lifestyle involving survival in a variety of niches, including the environment and the intestinal lumen of various animal species

  • Bacteria must regulate global gene expression in response to their environment, gathering information in part through specialized two-component regulatory systems that sense environmental changes. These systems largely operate by exploiting signal-sensing domains on histidine kinase (HK) sensory proteins linked to cognate response regulators (RR) that can modulate gene expression [1]

  • Orthologues of the candidate two-component regulatory system yehUT are found in almost all enteric bacteria, including plant and animal pathogens [3]

Read more

Summary

Introduction

Enteric bacteria have evolved a complex lifestyle involving survival in a variety of niches, including the environment and the intestinal lumen of various animal species. Bacteria must regulate global gene expression in response to their environment, gathering information in part through specialized two-component regulatory systems that sense environmental changes. These systems largely operate by exploiting signal-sensing domains on histidine kinase (HK) sensory proteins linked to cognate response regulators (RR) that can modulate gene expression [1]. Orthologues of the candidate two-component regulatory system yehUT are found in almost all enteric bacteria, including plant and animal pathogens [3]. In E. coli, yehUT regulates yjiY, a gene that encoded an inner membrane protein belonging to the carbon starvation protein superfamily. In E. coli, yehUT regulates yjiY, a gene that encoded an inner membrane protein belonging to the carbon starvation protein superfamily. yehUT may be involved in the stationary phase control network as YjiY is strongly induced at the onset of this growth phase [3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.