Abstract

The volatility of flavor compounds (10 distinctive esters commonly found in alcoholic beverages) was characterized using headspace solid-phase microextraction (HS-SPME) analysis combined with mathematical modeling. The impacts of extrinsic factors (extraction time and temperature) and intrinsic parameters (ethanol content and concentration of these flavor compounds) were evaluated on their influences. From extraction profiles, different kinetic behaviors of flavor compounds revealed that volatility is influenced by chemical natures (that is, molecular weight and physicochemical properties). Moreover, volatility was also found to be interrelated with extraction temperature and absorption/adsorption on the fiber's surface. Through mathematical modeling, the kinetic constants of these volatile compounds were computed, and their release profiles were determined. Finally, it was observed that an increase of ethanol (a competitive interference compound to flavor compounds) could decrease the extraction efficiency. Our studies indicated that this approach might be a rapid and practical method that would provide a better understanding of flavor release behavior from alcoholic beverages. The proposed approach may provide a simple and fast method in predicting the performance of key aroma esters in different alcoholic beverages. It could also be a practical way in quality control during the production of alcoholic beverage by monitoring key aroma esters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call