Abstract
A major candidate for intercellular signaling in higher plants is the stimulus-induced systemic change in membrane potential known as variation potential (VP). We investigated the mechanism of occurrence and long-distance propagation of VP in sunflower (Helianthus annuus L.) plants. Here we present evidence of the relationship among injury-induced changes in xylem tension, turgor pressure, and electrical potential. Although locally applied wounding did trigger a change in membrane potential, it evoked even faster changes in tissue deformation, apparently resulting from pressure surges rapidly transmitted through the xylem and experienced throughout the plant. Externally applied pressure mimicked flame wounding by triggering an electrical response resembling VP. Our findings suggest that VP in sunflower is not a propagating change in electrical potential and not the consequence of chemicals transmitted via the xylem, affecting ligand-modulated ion channels. Instead, VP appears to result from the surge in pressure in the xylem causing a change in activity of mechanosensitive, stretch-responsive ion channels or pumps in adjacent, living cells. The ensuing ion flux evokes local plasma membrane depolarization, which is monitored extracellularly as VP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.