Abstract

Context. The vertical component of the magnetic field was found to reach a constant value at the boundary between penumbra and umbra of stable sunspots in a recent statistical study of Hinode/SP data. This finding has profound implications as it can serve as a criterion to distinguish between fundamentally different magneto-convective modes operating in the sun. Aims. The objective of this work is to verify the existence of a constant value for the vertical component of the magnetic field (B⊥) at the boundary between umbra and penumbra from ground-based data in the near-infrared wavelengths and to determine its value for the GREGOR Infrared Spectrograph (GRIS@GREGOR) data. This is the first statistical study on the Jurčák criterion with ground-based data, and we compare it with the results from space-based data (Hinode/SP and SDO/HMI). Methods. Eleven spectropolarimetric data sets from the GRIS@GREGOR slit-spectograph containing fully-fledged stable sunspots were selected from the GRIS archive. SIR inversions including a polarimetric straylight correction are used to produce maps of the magnetic field vector using the Fe I 15648 Å and 15662 Å lines. Averages of B⊥ along the contours between penumbra and umbra are analyzed for the 11 data sets. In addition, contours at the resulting B⊥const are drawn onto maps and compared to intensity contours. The geometric difference between these contours, ΔP, is calculated for each data set. Results. Averaged over the 11 sunspots, we find a value of B⊥const = (1787 ± 100) gauss. The difference from the values previously derived from Hinode/SP and SDO/HMI data is explained by instrumental differences and by the formation characteristics of the respective lines that were used. Contours at B⊥ = B⊥const and contours calculated in intensity maps match from a visual inspection and the geometric distance ΔP was found to be on the order of 2 pixels. Furthermore, the standard deviation between different data sets of averages along umbra–penumbra contours is smaller for B⊥ than for B∥ by a factor of 2.4. Conclusions. Our results provide further support to the Jurčák criterion with the existence of an invariable value B⊥const at the umbra–penumbra boundary. This fundamental property of sunspots can act as a constraining parameter in the calibration of analysis techniques that calculate magnetic fields. It also serves as a requirement for numerical simulations to be realistic. Furthermore, it is found that the geometric difference, ΔP, between intensity contours and contours at B⊥ = B⊥const acts as an index of stability for sunspots.

Highlights

  • IntroductionMagnetic field strength values of up to 3000 gauss and more are observed and the field is mostly vertical

  • Sunspots are commonly divided into a central umbra and the surrounding penumbra

  • In this study we investigate the existence of a constant value of B⊥ for stable sunspots with ground-based telescope data for the first time and calculate its value, aiming to understand the different values from different data sources

Read more

Summary

Introduction

Magnetic field strength values of up to 3000 gauss and more are observed and the field is mostly vertical. This leads to an effective hindering of convection. The observation of umbral substructures (e.g., umbral dots; Ortiz et al 2010) show that convection is not totally suppressed, heat flux values in the umbra are reduced to 5–25% of the quiet-sun value (Borrero & Ichimoto 2011). Magnetic fields are observed to be weaker than in the umbra and more inclined (Rempel & Schlichenmaier 2011), forming a funnel-like topology of the magnetic field. Penumbral heat flux values between those of umbra and quiet-sun are found, which indicates that convection is hindered less effectively.

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call