Abstract
The versatile functions of carotenoids in biological systems are associated with the extended π-electron conjugation system. Strong visible absorption resulting from the optically allowed S2 (1Bu+) state and the low-lying optically forbidden S1 (2Ag-) state examined. Carotenoids also exhibit an absorption band in the ultraviolet-B region; however, the origin of this band (hereafter referred to as Suv state) is not well characterized. The Suv state is a candidate for the destination level of the well-known S1 → Sn transient absorption; however, an obvious energy mismatch has been observed. In this study, we examined the steady-state and picosecond transient absorption spectra of lycopene in various solvents. The Suv absorption of carotenoids with diverse conjugation lengths was also examined. The dependence of the energies on solvent polarizability and conjugation length revealed that both Suv and Sn are the "second" Bu+ state. The absorption spectrum for lycopene at 200 K revealed an additional vibrational band, which may be the vibrational origin of the S0 → Suv band. Considering the slow vibrational relaxation of the 2Ag- state, the S1 → Sn transition may represent the 2Ag- (v = 1) → 2Bu+ (v = 0) transition, and the energetic contradiction can be resolved.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.