Abstract

In an attempt to further characterize the type of Ca2+ channels primarily regulating GABA exocytosis, the effects of increasing concentrations of omega CTx MVIIC,-omega-Aga IVA and other Ca2+ channel blockers (nitrendipine, Cd2+ and Ni2+), commonly used for pharmacologically discerning among the various types of Ca2+ channels, were tested on the dissected Ca2+ dependent fraction of the depolarization evoked release of GABA from mouse brain synaptosomes. Our results show that omega-CTx MVIIC inhibits GABA exocytosis with a calculated IC50 of 3 microM and omega-Aga IVA with a calculated IC50 of 50 nM. The divalent cation Cd2+ only diminishes GABA exocytosis at 70 microM, but does not modify this response at lower concentrations (i.e. 1 and 10 microM). Neither nitrendipine (10 microM) nor Ni2+ (100 microM and 500 microM) modified GABA exocytosis. The failure of nitrendipine at a high concentration to inhibit GABA exocytosis discards L-type Ca2+ channels as the main regulators of this response; likewise that of Ni2+ discards Ca2+ channels of the N-type, and the failure of nM concentrations of omega-CTx MVIIC or 500 microM Ni2+, also discards alpha 1A/Q-type Ca2+ channels as the main regulators of the GABA response. On the basis of these results and in particular of the higher potency of omega-Aga IVA than omega-CTx MVIIC, it is concluded that the type of Ca2+ channels that primarily determine the exocytosis of GABA belong to a P-like type of Ca2+ channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call