Abstract
In the present study, the temperature-dependent coefficient of thermal expansion (CTE) of a graphene sheet (GS) is determined using molecular dynamics (MD) simulations. Our simulations show that the CTE of a GS (i) varies non-linearly with temperature, (ii) is negative over a temperature range of 0–500 K and (iii) differs by no more than 9% in the armchair and zigzag directions. We find good agreement between our MD results and recent experimental data. The present study also investigates the effect of missing atoms (vacancy defects) on the CTE of a GS. In our MD simulations of a 4.9 nm × 4.9 nm GS, we find that the presence of two vacant atoms (about 1.56% by volume) increases the negative CTE by as much as 40%. Correlations between the CTE and the number of missing atoms have been developed based on MD simulation results for a perfect GS and a GS with 1.56% defects by volume. Predictions of the CTE of a defective GS from the correlations compare favourably with MD simulations at 3.13% defects by volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.