Abstract

Numerical simulations of the thermo-solutal Marangoni convection developing in a Si–Ge liquid bridge of a floating-zone system have been performed under zero gravity. Half of the liquid bridge was considered as the three-dimensional (3D) computational domain. In this system, the solutal Marangoni convection develops in the direction opposite to the thermal Marangoni convection along the free surface in the bridge, i.e., the thermal Marangoni number, MaT, is negative and the solutal Marangoni number, MaC, is positive. Since the SiGe melt is a low-Prandtl number (Pr = 6.37 × 10−3) and high-Schmidt number (Sc = 14.0) liquid, the temperature field is almost independent of the convective flow and the concentration field determines the transport structures. When MaC is larger than −MaT, the concentration pattern is steady and two-dimensional (2D) axisymmetric. When MaC is smaller than −MaT, we predict two kinds of flow transitions with the increase in |MaT|. If MaC is sufficiently large (MaC ≳ 530), as |MaT| increases, the flow changes from a 2D-steady pattern to a 3D-chaotic behavior at moderate |MaT| (1050 ≲ |MaT| ≲ 2800). We also predict that a second transition and an oscillatory rotating flow occur as |MaT| increases further. The flow becomes 3D-steady at smaller MaC (MaC ≲ 360) with no transition, and the azimuthal wavenumber (m) decreases with increasing |MaT|. Furthermore, the thermo-solutal Marangoni convection in this system can be suppressed almost completely when MaC is approximately equal to −MaT (MaC ≈ −MaT) and the flow becomes periodically stable with weak fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.