Abstract

Release of Ca2+ from skeletal sarcoplasmic reticulum vesicles was studied by the spectrophotometric stopped-flow technique using tetraphenylboron as a releasing agent. The extent of Ca2+ release shows a sigmoidal response, with respect to the tetraphenylboron concentration, being dependent on Ca2+ preloading and Ca2+-ATPase activity, since these experiments were performed on actively loaded vesicles. The release process has a rapid component with an apparent rate constant of 6-8 s-1, showing a linear relationship between the rapid rate of Ca2+ release and the Ca2+ content of the vesicles. The release is not mediated by the reversal of the Ca2+ pump. Since the amphipathic anion tetraphenylboron was unable to elicit a Ca2+-release response when added to a preparation of sarcoplasmic reticulum phospholipid vesicles, it is suggested that there may be an interaction with some membrane protein(s) at the hydrophobic/hydrophilic interface leading to the opening of some specific Ca2+-release pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call