Abstract

The nucleotide sequence of the tetracycline resistance determinant tet(M), located on conjugative transposon Tn916 of Enterococcus faecalis, was determined and found to encode a 72,486-dalton protein exhibiting a high degree of homology with other tet(M) determinants. A short open reading frame corresponding to a 28-amino-acid peptide and containing a number of inverted repeat sequences was noted immediately upstream of tet(M), suggesting that regulation might occur by a mechanism involving transcriptional attenuation. Transcription analyses found this to indeed be the case, showing that the expression of tet(M) resulted from an extension of a small transcript representing the upstream leader region into the resistance determinant. Exposure of cells to tetracycline resulted in a significant increase in the amount of tet(M) transcription; this increase could be explained on the basis of increased transcriptional read-through from the upstream transcript. A model suggesting how transcriptional attenuation might operate in this system is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.