Abstract
This study discusses the feasibility of using a combined torsional-axial rheometer to indirectly measure the complex Poisson’s ratio based on shear and Young’s modulus. For this purpose, isothermal frequency sweeps in torsion and extension are performed sequentially on the same cylindrical specimen and under the same environmental conditions. The method is tested on two amorphous polymers, a semicrystalline polymer, a polymer blend, and a copolymer. The article includes an extensive literature review and an uncertainty assessment of the method to provide a basis for subsequent data comparison with existing research. The experimental data show a monotonic increase in the complex Poisson’s ratio up to 0.5 as the temperature approaches α-relaxation for all samples, except for the amorphous polymer. The latter shows a local minimum in the complex Poisson’s ratio observed near α-relaxation, which disappears after thermal annealing of the sample above the α-relaxation temperature. The real and imaginary parts of the complex Poisson’s ratio are additionally determined by evaluating both phase shift angles from torsional and extensional measurements. All polymers show a certain offset between the torsional and extensional phase shift angles in the glassy state, which gradually decreases as the temperature approaches α-relaxation. The complex Poisson’s ratio results are in good agreement with the literature data obtained by existing methods. This confirms that the method is applicable to polymers up to α-relaxation temperatures with significant time savings due to the nondestructive approach. This is of particular interest, given the limited availability of data in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.