Abstract

The aim of this work was to determine contents and turnover rates for dopamine (DA) and norepinephrine (NE) and to identify the catecholamine (CA) released during stimulation of the rat carotid body (CB). Turnover rates and the release of CA were measured in an in vitro preparation using a combination of HPLC and radioisotopic methods. Mean rat CB levels of DA and NE were 209 and 45 pmol/mg tissue, respectively. With [(3)H]tyrosine as precursor, rat CB synthesized [(3)H]CA in a time- and concentration-dependent manner; calculated turnover times for DA and NE were 5.77 and 11.4 h, respectively. Hypoxia and dibutyryl adenosine 3',5'-cyclic monophosphate significantly increased [(3)H]CA synthesis. In normoxia, rat CB released [(3)H]DA and [(3)H]NE in a ratio of 5:1, comparable to that of the endogenous tissue CA. Hypoxia and high K(+) preferentially released [(3)H]DA, nicotine preferentially released [(3)H]NE, and acidic stimuli released both amines in proportion to tissue content. Release of [(3)H]CA induced by hypoxia and high K(+) was nearly fully dependent on extracellular Ca(2+), whereas basal normoxic release was not altered by removal of Ca(2+) from the incubating solution. We conclude that the rat CB is an organ with higher levels of DA than NE that preferentially releases DA or NE in a stimulus-specific manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.