Abstract

The structure and dynamics of the hepatitis delta virus ribozyme (HDVr) are studies using molecular dynamics simulations at several stages along its catalytic reaction path, including reactant, activated precursor, transition state mimic and product states, departing from an initial structure based on the C75U mutant crystal structure (PDB: 1VC7). Results of five 350 ns molecular dynamics simulations reveal a spontaneous rotation of U-1 that leads to an in-line conformation and support the role of protonated C75 as the general acid in the transition state. Our results provide rationale for the interpretation of several important experimental results, and make experimentally testable predictions regarding the roles of key active site residues that are not obvious from any available crystal structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.