Abstract
The 1H NMR spectra of a series of well-characterized μ-phenoxo and μ-alkoxo spin-coupled dicopper(II) complexes have been investigated. The complexes studied were [Cu2(BPMP)(OH)]2+ (1) (BPMP = 2,6-bis[[bis(2-pyridylmethyl)amino]methyl]-4-methylphenol), [Cu2(CH3HXTA)(OH)]2- (2) (CH3HXTA = N,N ‘-(2-hydroxy-5-methyl-1,3-xylylene)bis(N-carboxymethylglycine), [Cu2(m-XYL)(OH)]2+ (3) (m-XYL = 2,6-bis[[bis(2-pyridylethyl)amino]methyl]phenol), and [Cu2(TBHP)(OAc)]2+ (4) (TBHP = N,N,N ‘,N ‘-tetrakis[(2-benzimidazolyl)methyl]-2-hydroxy-1,3-diaminopropane). The magnetic interactions of these complexes range from strongly antiferromagnetically to weakly ferromagnetically coupled. Both one- and two-dimensional (COSY) 1H NMR methods were used to facilitate the assignment of the hyperfine shifted 1H NMR signals of each complex. COSY experiments provide clear cross signals for resonances <200 Hz wide. These data have facilitated the assignment of the hyperfine shifted 1H NMR signals and have verified that the solid state structures exist in solution for each system studied. Assuming a paramagnetic dipolar relaxation mechanism, the crystallographically determined Cu−H distance (r) is proportional to T11/6. All calculated Cu−H distances for 1−4 are within ca. 20% of the Cu−H distances derived from X-ray crystallography. These data indicate that a paramagnetic dipolar relaxation mechanism is the dominant proton relaxation pathway for spin-coupled dicopper(II) centers. Our results indicate that 1H NMR spectroscopy is an excellent tool with which to probe the solution structures of spin-coupled dicopper(II) centers in model complexes as well as biological systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.