Abstract

To investigate the characteristics of aerosols in north China, the samples of water-soluble ions, including anions (F−, Cl−, NO2−, NO3−, SO42−) and cations (NH4+, K+, Na+, Ca2+, Mg2+) in 8 size-segregated particle fractions, are collected using a sampler from Sep. 2009 to Aug. 2010 at four sites in urban areas (Beijing, Tianjin and Tangshan) and a background region (Xinglong) in the Jing-Jin-Ji urban agglomeration. High spatial variability is observed between the urban areas and the background region. The results of chemical composition analysis showed that secondary water soluble ions (SO42− + NO3− + NH4+) (SWSI) composed more than half the total ions, and are mainly found in fine particles (aerodynamic diameters less than 2.1 μm), while Mg2+ and Ca2+ contributed to a large fraction of the total water-soluble ions in coarse particles (aerodynamic diameters greater than 2.1 μm and less than 9.0 μm). The concentrations of SO42−, NO3− and NH4+ are higher in summer and winter and lower in spring and autumn. Mg2+ and Ca2+ are obviously abundant in winter in Beijing, Tianjin and Tangshan. In contrast, Mg2+ and Ca2+ are abundant in autumn in Xinglong. The SWSI showed a bimodal size distribution with the fine mode at 0.43–1.1 μm and the coarse mode at 4.7–5.8 μm, and had different seasonal variations and bimodal shapes. NH4+ played an important role in the size distributions and the formations of SO42− and NO3−. Heterogeneous reaction is the main formation mechanism of SO42− and NO3−, which tended to be enriched in the coarse mode of aerosol. The sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) indicated high photochemical oxidation property over the whole Jing-Jin-Ji urban agglomeration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call