Abstract

The solution of Maxwell’s equations in a non-convex polyhedral domain is less regular than in a smooth or convex polyhedral domain. In this paper we show that this solution can be decomposed into the orthogonal sum of a singular part and a regular part, and we give a characterization of the singular part. We also prove that the decomposition is linked to the one associated to the scalar Laplacian. Copyright ( 1999 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.