Abstract

AbstractThe influence of the electrode length and the voltage pulses on the discharge characteristics of the surface dielectric barrier discharge actuators were investigated numerically by using the plasma kinetic model. The governing equations including the coupled continuity plasma discharge equation, drift‐diffusion equation, electron energy equation, Poisson's equation, and Navier–Stokes equation were solved in quiescent air at atmospheric pressure. The results show that the shorter pulse rising time results in higher discharge characteristics, more intense discharge, and bigger discharge region. Differently, the compared discharge characteristics for the electrodes with different lengths prove that the length of the powered and ground electrodes has little effect on the surface dielectric barrier discharge driven by nanosecond pulsed voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.