Abstract

Microorganisms that can simultaneously remediate organic pollutants and heavy metal contamination are great significance in bioremediation. Nevertheless, reports of such microorganisms are still scarce. Here, Pseudomonas sp. YH-1 and Rhodococcus sp. YH-3 were isolated and identified, and they showed greater tolerance to hexavalent (VI) (750 and 800 mg·L−1). The constructed bacteria consortium YH (YH-1:YH-3 = 1:1) could simultaneously degrade 41.69% of pyrene (50 mg·L−1) and remove 76.67% of Cr(VI) (30 mg·L−1) within 5 days. The potential mechanism of Cr(VI) tolerance of YH was further explored by genomic and microscopic analysis. The results showed that YH responded to Cr(VI) stress mainly through efflux of Cr(VI) by chrA and copZ, chromate reduction, DNA-repaired proteases reduces ROS damage, and biosorption by carboxyl, hydroxyl, amino functional groups. Strains YH-1 and YH-3 also contained a variety of genes associated with resistance to other heavy metals, such as cadmium (czcBD), mercury (merAPTR), manganese (mntABC) and copper (copAC, cusABRF and pcoBD). Based on GC–MS and genomic analysis, pyrene was degraded via salicylic acid and phthalic acid pathways. Moreover, a great number of genes related to aromatic hydrocarbon catabolism were identified in the genomes of YH-1 and YH-3. These results confirmed the potential application of the bacteria consortium YH in the bioremediation of water and soil co-contaminated with PAHs-heavy metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.