Abstract

The Si/SiO2 interface formed by remote plasma enhanced chemical vapor deposition (RPECVD) at low temperature with SiH4/N2O or SiH4/N2O/Cl2 was studied and compared with thermal oxidation. The interface of the CVD SiO2 without chlorine addition is rougher than that with chlorine addition. But the surface roughness of CVD SiO2 films increases with chlorine addition. The thermal oxidation induces strong interface strains, and the strains generated by the CVD SiO2 without chlorine addition are stronger and are distributed more nonuniformly than those by the chlorinated SiO2. It is believed that chlorine addition during RPECVD affects the initial stages of deposition, and chlorine is combined with Si dangling bonds existing at the Si/SiO2 interface through the formation of Si–Clx bonds. It was also found that with chlorine addition during RPECVD, the strained layer thickness, interface trap density, and suboxide density could be lowered significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.