Abstract

Spiders spin a range of silks from different glands for distinct functions, and each silk type exhibits distinct material properties. Silk extruded by the aciniform gland is used for prey wrapping and egg case construction and displays high toughness and extensibility. So far, only the aciniform spidroin 1 (AcSp1) gene which was firstly identified as a silk gene in aciniform gland has been obtained. Here we present the gene sequence for the second type of full-length aciniform silk protein, AcSp2. Analysis of the AcSp2 primary sequence reveals relatively conserved terminal regions and a distinct repetitive sequence relative to AcSp1. A fraction of the gene can be expressed in recombinant systems. Secondary structure analysis of the recombinant AcSp2 protein in solution reveals that the protein adopts mainly an α-helical conformation. Artificial spinning of recombinant AcSp2 demonstrates that the spidroins can be spun into fine fibers which display up to 142% extensibility. The silk fibers are dominated by β-sheet and β-turn secondary structures. Moreover, the mechanical data collected from these synthetic fibers revealed that the mechanical properties are partly correlated with the molecular weights. Overall, our studies enrich our knowledge of spidroin gene family members and provide a new insight into creation of high-performance silk fibers for next generation biomaterials. Statement of SignificanceIn this study, we presented the second type of aciniform silk protein (AcSp2) gene sequence of orb-weaving spider Araneus ventricosus, expanding the spider silk gene family members. The primary structure revealed the central repetitive sequence of the new spidroin gene is distinctly different from other AcSp1 genes. Characterization of the recombinant minispidroin fibers of AcSp2 revealed the mechanical properties are partly correlate with the molecular weights, and the spidroins can be spun into fine fibers which display up to 142% extensibility. Overall, our studies enrich our knowledge of spidroin gene family members and provide a new insight into creation of high-performance silk fibers for next generation biomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call