Abstract

Azoxystrobin, a high-efficiency and broad-spectrum strobilurin fungicide, has been widely used in global agricultural production. However, the effects of azoxystrobin on soil micro-organisms have scarcely been studied, and relevant experiments are usually conducted under laboratory conditions using active ingredient. Therefore, the effects of azoxystrobin on soil micro-organisms when applied to actual farmland are unknown. We sought to address this knowledge gap in this study, where we studied the effects of azoxystrobin on soil micro-organisms in a wheat–corn rotation field over two years. The results indicate that after two years of azoxystrobin application the activities of soil enzymes were inhibited, and the abundance of functional genes related to the nitrogen and carbon cycle were inhibited, which change the abundance of soil microbial bacteria of genera. As a consequence, the soil nitrogen and carbon cycles were disturbed. In addition, azoxystrobin inhibited the abundance of functional bacteria related to organic pollutant degradation and soil metabolism, where the rate of azoxystrobin degradation diminished over time. Moreover, azoxystrobin significantly inhibited the soil-culturable microbial population. The integrated biomarker response (IBR) indicated that the soil-culturable microbial population can be used as a sensitive indicator of the effect of azoxystrobin on soil micro-organisms. The final levels of azoxystrobin residues measured in grains were less than 0.004 mg/kg, lower than the maximum residue limits in European Union and China. The results of this study provide a basis for suggestions regarding the appropriate use of azoxystrobin in addition to support for elucidating the interaction between biological macromolecules and pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call