Abstract

We report that the C-terminal domain of skeletal muscle dystrophin expressed as a fusion protein with glutathione S-transferase (designated GST-CT-1) is a substrate for Ca2+/calmodulin-dependent phosphorylation and dephosphorylation. GST-CT-1 and GST-CT-1F (GST-CT-1 truncated by 20-25 residues) were phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). The stoichiometries of phosphorylation by CaM kinase II were 1.65 mol of Pi/mol of GST-CT-1 and 0.39 mol of Pi/mol of GST-CT-1F, respectively, suggesting that the principal site(s) of phosphorylation is (are) located in the C-terminal 20-25 residues that are missing from GST-CT-1F. The GST-CT-1 fusion protein was phosphorylated on both serine and threonine residues, whereas GST-CT-1F was phosphorylated only on serine. CaM kinase II-phosphorylated GST-CT-1 and GST-CT-1F were efficiently dephosphorylated by calcineurin, a Ca2+/calmodulin-dependent protein phosphatase (type 2B protein phosphatase). Importantly, calcineurin was found to be associated with a purified sarcolemmal membrane preparation enriched in dystrophin. Type 2A protein phosphatase isolated from smooth muscle (SMP-I) and its catalytic subunit (SMP-ic) also dephosphorylated GST-CT-1, but were less active toward these substrates than was calcineurin. Type 2C phosphatase (SMP-II) and type 1 protein phosphatases [SMP-III, SMP-IV, and myosin-associated phosphatase (PP1M) of smooth muscle and skeletal muscle protein phosphatase 1c] were ineffective in dephosphorylating the C-terminal region of dystrophin.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call