Abstract

Let $S = G / G'$ be a rational homogeneous space defined by a complex simple Lie group $G$ and a maximal parabolic subgroup $G'$. For a base point $s \in S$, let $\mathcal{C}_s \subset \mathbb{P}T_s (S)$ be the variety of minimal rational tangents at $s$. In the study of rigidity of rational homogeneous spaces, the following question naturally arises. Let $X$ be a Fano manifold of Picard number 1 such that the variety of minimal rational tangents at a general point $x \in X$, $\mathcal{C}_x \subset \mathbb{P}T_x (X)$, is isomorphic to $\mathcal{C}_s \subset \mathbb{P}T_s (S)$. Is $X$ biholomorphic to $S$? An affirmative answer has been given by Mok when $S$ is a Hermitian symmetric space or a homogeneous contact manifold. Extending Mok's method further and combining it with the theory of differential systems on $S$, we will give an affirmative answer when $G'$ is associated to a long simple root.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call