Abstract

alpha-Phenyl-tert-butyl nitrone (PBN) is a nitrone spin trap, which has shown efficacy in animal models of oxidative stress, including stroke, aging, sepsis, and myocardial ischemia/reperfusion injury. We have prepared a series of novel cyclic variants of PBN and evaluated them for radical trapping activity in vitro. Specifically, their ability to inhibit iron-induced lipid peroxidation in liposomes was assessed, as well as superoxide anion (O2(-.)) and hydroxyl radical ((.)OH) trapping activity as determined biochemically and using electron spin resonance (ESR) spectroscopy. All cyclic nitrones tested were much more potent as inhibitors of lipid peroxidation than was PBN. The unsubstituted cyclic variant MDL 101,002 was approximately 8-fold more potent than PBN. An analysis of the analogs of MDL 101,002 revealed a direct correlation of activity with lipophilicity. However, lipophilicity does not solely account for the difference between MDL 101,002 and PBN, inasmuch as the calculated octanol/water partition coefficient for MDL 101,002 is 1.01 as compared to 1.23 for PBN. This indicated the cyclic nitrones are inherently more effective radical traps than PBN in a membrane system. The most active compound was a dichloro analog in the seven-membered ring series (MDL 104,342), which had an IC50 of 26 mum, which was 550-fold better than that of PBN. The cyclic nitrones were shown to trap (.)OH with MDL 101,002 being 20 25 times more active than PBN as assessed using 2-deoxyribose and p-nitrosodimethylaniline as substrates, respectively. Trapping of (.)OH by MDL 101,002 was also examined by using ESR spectroscopy. When Fenton's reagent was used, the (.)OH adduct of MDL 101,002 yielded a six-line spectrum with hyperfine coupling constants distinct from that of PBN. Importantly, the half-life of the adduct was nearly 5 min, while that of PBN is less than 1 min at physiologic pH. MDL 101,002 also trapped the O2(-.) radical to yield a six-line spectrum with coupling constants very distinct from that of the (.)OH adduct. In mice, the cyclic nitrones ameliorated the damaging effects of oxidative stress induced by ferrous iron injection into brain tissue. Similar protection was not afforded by the lipid peroxidation inhibitor U74006F, thus implicating radical trapping as a unique feature in the prevention of cell injury. Together, the in vivo activity, the stability of the nitroxide adducts, and the ability to distinguish between trapping of (.)OH and O2(-.) suggest the cyclic nitrones to be ideal reagents for the study of oxidative cell injury.

Highlights

  • MATERIALS AND METHODSThe isoquinoline-based nitrones were synthesized from the appropriate formamide by a multistep procedure (21)

  • The reaction of superoxide with MDL 101,002 produced an adduct with a more intense six-line spectrum with a ␤ hydrogen coupling constant which was approximately half that of the 1⁄7OH adduct. This is similar to the differences in ␤ hydrogen coupling for the 1⁄7OH and O2. adducts of 5,5-dimethylpyrroline-1-oxide, where it is speculated that trapping of O2. induces a conformational change such that the altered bond angles bring the ␤ hydrogen in closer proximity to the nitrogen nucleus

  • These data suggest that the cyclic nature of our nitrones leads to a significant difference in trapping and adduct conformation relative to PBN as predicted by molecular modeling studies

Read more

Summary

MATERIALS AND METHODS

The isoquinoline-based nitrones were synthesized from the appropriate formamide by a multistep procedure (21). Radical trapping in vitro by the cyclic nitrones was evaluated by: (a) examining the ability of the nitrones to inhibit oxidation of soybean phosphatidylcholine liposomes and (b) assessing 1⁄7OH trapping using bleaching of p-NDA. Assay mixtures in glass cuvettes contained 0.02 ml of H2O2, 0.02 ml of test compound, 0.10 ml of p-NDA, and 50 mM NaCl, pH 7.0, to a final volume of 0.98 ml. Serial dilutions of the test compounds were made such that a constant volume of 0.02 ml was added to the reaction mixture. The IC50 values for the nitrones were determined by GraphPad InPlot 4 and represent the amount of spin trap required to inhibit the bleaching of p-NDA by 50%. The effect of the nitrones on convulsions and mortality was monitored

RESULTS
1.41 Not determined
DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call