Abstract

The IdiC protein (iron deficiency induced protein C) is encoded by orf5 (now called idiC), which is part of the iron-responsive idiB operon of Synechococcus elongatus PCC 7942. The 20.5 kDa IdiC protein has a putative transmembrane helix and belongs to the thioredoxin (TRX)-like [2Fe-2S] ferredoxin family. IdiC has the highest similarity to the peripheral subunit NuoE of the Escherichia coli NDH-1 complex. IdiC expression increased under iron starvation and also in the late growth phase, representing growth conditions, which favor photosynthetic cyclic and respiratory electron transport over photosynthetic linear electron transport from water to NADP+. Attempts to insertionally inactivate the idiC gene generated merodiploid mutants with a strongly reduced IdiC content (mutant MuD) but no IdiC-free mutant. Thus, IdiC seems to be an essential protein for the viability of S. elongatus under the used experimental conditions. Comparative analyses of S. elongatus wild type (WT) and mutant MuD showed that under iron limitation in WT and MuD the amount of the reaction center proteins PsbA and PsaA/B was highly reduced. MuD had a lower growth rate, chlorophyll content, and photosynthetic O2 evolving activity with bicarbonate as electron acceptor than WT. Immunoblot analyses also showed that in MuD, when grown under iron limitation, the amount of the proteins IdiC and IdiB was greatly reduced as compared to WT. As a consequence of the reduction of the transcription factor IdiB, IdiA and IrpA expression were also decreased. In addition, the IsiA protein concentration was lower in MuD than in WT, although the isiA mRNA was equally high in MuD and WT. Another significant difference was the lower expression of the ferredoxin:NADP+ oxidoreductase in mutant MuD under iron limitation compared to WT. A possible function of the protein IdiC in cyclic electron transport around photosystem I and/or in respiratory electron transport will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.