Abstract

Methyl farnesoate (MF) is the crustacean homolog of the insect juvenile hormone and is believed to regulate growth and reproduction in crustaceans. Farnesoic acid O-methyltransferase (FAMeT) catalyzes the conversion of farnesoic acid (FA) to MF. Here we report the cloning and characterization of two forms of FAMeTs (i.e. LvFAMeT-S and LvFAMeT-L) from the shrimp Litopenaeus vannamei. LvFAMeT transcript has a wide tissue distribution pattern in L. vannamei and is also expressed in nauplius, zoea, mysis, post-larval stages and adults. Unlike FAMeTs reported in other decapods, transcripts of two different sizes were detected in L. vannamei. We postulate that the wide distribution of LvFAMeT expression may be related to its role in growth and regulation of molting. To study the functions of LvFAMeT in molting, the RNA interference (RNAi) technique was used. Injection of double stranded RNA (dsRNA) for LvFAMeT knocked down the expression of LvFAMeT in shrimp for at least 3 days and the shrimp did not advance to the final stage of molt cycle. Furthermore, the expression of the molt-related genes encoding cathepsin-L and the hemocyanin gene was disturbed. Subsequently, 100% mortality of the shrimp was observed in the LvFAMeT dsRNA-injected shrimp. In contrast, control shrimp completed their molt and proceeded to the next molt cycle. We postulate that, as an important enzyme for the conversion of FA to MF, RNAi injection knocked down the expression of LvFAMeT which could potentially result in a decrease in the production of MF and subsequently, could affect the molting process. The newly identified LvFAMeT may be involved in the control of molting in shrimp. The results of this study demonstrate the potential use of the RNA interference technique to study other putative genes identified in crustaceans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.