Abstract

Permafrost on the Qinghai-Tibet Plateau is one of the most sensitive regions to climate warming, thus characterizing its microbial diversity and community composition may be important for understanding their potential responses to climate changes. Here, we investigated the prokaryotic diversity in a 10-m-long permafrost core from the Qinghai-Tibet Plateau by restriction fragment length polymorphism analysis targeting the 16S rRNA gene. We detected 191 and 17 bacterial and archaeal phylotypes representing 14 and 2 distinct phyla, respectively. Proteobacteria was the dominant bacterial phylum, while archaeal communities were characterized by a preponderance of Thaumarchaeota. Some of prokaryotic phylotypes were closely related to characterized species involved in carbon and nitrogen cycles, including nitrogen fixation, methane oxidation and nitrification. However, the majority of the phylotypes were only distantly related to known taxa at order or species level, suggesting the potential of novel diversity. Additionally, both bacterial α diversity and community composition changed significantly with sampling depth, where these communities mainly distributed according to core horizons. Arthrobacter-related phylotypes presented at high relative abundance in two active layer soils, while the deeper permafrost soils were dominated by Psychrobacter-related clones. Changes in bacterial community composition were correlated with most measured soil variables, such as carbon and nitrogen contents, pH, and conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.