Abstract

The placental villus syncytiotrophoblast, the nutrient-transporting and hormone-producing epithelium of the human placenta, is a critical regulator of fetal development and maternal physiology. However, the identities of the proteins synthesized and secreted by primary human trophoblast (PHT) cells remain unknown. Stable Isotope Labeling with Amino Acids in Cell Culture followed by mass spectrometry analysis of the conditioned media was used to identify secreted proteins and obtain information about their relative rates of synthesis in syncytialized multinucleated PHT cells isolated from normal term placental villus tissue (n = 4/independent placenta). A total of 1,344 proteins were identified, most of which have not previously been reported to be secreted by the human placenta or trophoblast. The majority of secreted proteins are involved in energy and carbon metabolism, glycolysis, biosynthesis of amino acids, purine metabolism, and fatty acid degradation. Histone family proteins and mitochondrial proteins were among proteins with the slowest synthesis rate whereas proteins associated with signaling and the plasma membrane were synthesized rapidly. There was a significant overlap between the PHT secretome and proteins known be secreted to the fetal circulation by the human placenta in vivo. The generated data will guide future experiments to determine the function of individual secreted proteins and will help us better understand how the placenta controls maternal and fetal physiology.

Highlights

  • The human placenta constitutes the interface between the maternal and fetal circulations and performs a wide array of functions, including nutrient and oxygen transport and secretion of hormones and exosomes (Costa, 2016)

  • Proteins in the primary human trophoblast (PHT) cell conditioned media were separated by 1D SDS PAGE, and the gel lanes were excised into six slices and subjected to in-gel digestion followed by HPLC-electrospray ionization tandem mass spectrometry analysis

  • Using the Kyoto Encyclopedia for Genes and Genomes (KEGG), we found enrichment for pathways related to carbon metabolism that can be linked to trophoblast function, including glycolysis, biosynthesis of amino acids, purine metabolism, and fatty acid degradation (Figure 1E)

Read more

Summary

Introduction

The human placenta constitutes the interface between the maternal and fetal circulations and performs a wide array of functions, including nutrient and oxygen transport and secretion of hormones and exosomes (Costa, 2016). A better understanding of the mechanisms by which the human placenta regulates fetal development and maternal physiology will provide insights into the pathophysiology of pregnancy complications and how changes in placental function determines life-long health. To allow early prediction of development of pregnancy complications caused by altered placental function and to design new intervention strategies targeting the placenta, sensitive biomarkers for placental function that can be measured using a minimally invasive approach, preferably in a maternal blood sample, are required. No such approach is currently available, and the search for biomarkers for early detection of serious pregnancy complications has been disappointing.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call