Abstract
IntroductionSynaptic dysfunction and degeneration are central events in Alzheimer’s disease (AD) pathophysiology that are thought to occur early in disease progression. Synaptic pathology may be studied by examining protein biomarkers specific for different synaptic elements. We recently showed that the dendritic protein neurogranin (Ng), including the endogenous Ng peptide 48 to 76 (Ng48–76), is markedly increased in cerebrospinal fluid (CSF) in AD and that Ng48–76 is the dominant peptide in human brain tissue. The aim of this study was to characterize Ng in plasma and CSF using mass spectrometry and to investigate the performance of plasma Ng as an AD biomarker.MethodsPaired plasma and CSF samples from patients with AD (n = 25) and healthy controls (n = 20) were analyzed in parallel using an immunoassay developed in-house on the Meso Scale Discovery platform and hybrid immunoaffinity-mass spectrometry (HI-MS). A second plasma material from patients with AD (n = 13) and healthy controls (n = 17) was also analyzed with HI-MS. High-resolution mass spectrometry was used for identification of endogenous plasma Ng peptides.ResultsNg in human plasma is present as several endogenous peptides. Of the 16 endogenous Ng peptides identified, seven were unique for plasma and not detectable in CSF. However, Ng48–76 was not present in plasma. CSF Ng was significantly increased in AD compared with controls (P < 0.0001), whereas the plasma Ng levels were similar between the groups in both studies. Plasma and CSF Ng levels showed no correlation. CSF Ng was stable during storage at −20°C for up to 2 days, and no de novo generation of peptides were detected.ConclusionsFor the first time, to our knowledge, we have identified several endogenous Ng peptides in human plasma. In agreement with previous studies, we show that CSF Ng is significantly increased in AD as compared with healthy controls. The origin of Ng in plasma and its possible use as a biomarker need to be further investigated. The results suggest that CSF Ng, in particular Ng48–76, might reflect the neurodegenerative processes within the brain, indicating a role for Ng as a potential novel clinical biomarker for synaptic function in AD.Electronic supplementary materialThe online version of this article (doi:10.1186/s13195-015-0124-3) contains supplementary material, which is available to authorized users.
Highlights
Synaptic dysfunction and degeneration are central events in Alzheimer’s disease (AD) pathophysiology that are thought to occur early in disease progression
cerebrospinal fluid (CSF) Ng was significantly increased in AD compared with controls (P < 0.0001), whereas the plasma Ng levels were similar between the groups in both studies
In agreement with previous studies, we show that CSF Ng is significantly increased in AD as compared with healthy controls
Summary
Synaptic dysfunction and degeneration are central events in Alzheimer’s disease (AD) pathophysiology that are thought to occur early in disease progression. Alzheimer’s disease (AD) is a neurodegenerative disease characterized by neuropathological changes in the brain, including extracellular amyloid-β (Aβ) deposits called plaques as well as neurofibrillary tangles consisting of hyperphosphorylated tau protein (p-tau) [1,2]. A central event in AD pathology is synaptic dysfunction and degeneration [4]. Synaptic markers are promising tools for early AD diagnosis. Such biomarkers could be used to monitor disease progression and play an important role in the evaluation of novel disease modifying therapeutics
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.