Abstract

BackgroundThe oral GPCR nutrient/taste receptor gene repertoire consists of the Tas1r family (sweet and umami tastes), the Tas2r family (bitter taste) as well as several other potential candidate sensors of amino acids, peptones and fatty acids. Taste/nutrient receptors play a fundamental role in survival through the identification of dietary nutrients or potentially toxic compounds. In humans and rodents some variations in taste sensitivity have been related to receptor polymorphisms. Some allelic variants, in turn, have been linked to the adaptation to specific geographical locations and dietary regimes. In contrast, the porcine taste/nutrient receptor repertoire has been only partially characterized and limited information on genetic variation across breeds and geographical location exists. The present study aims at filling this void which in turn will form the bases for future improvements in pig nutrition.ResultsOur results show that the pig oral repertoire of taste/nutrient receptors consists of at least 28 receptor genes with significant transcription measured for 27. When compared to humans and rodents, the porcine gene sequences encoding sensors for carbohydrates, amino acids and fatty acids were highly conserved whilst the bitter taste gene family (known as Tas2rs) showed high divergence. We identified 15 porcine Tas2rs of which 13 are orthologous to human sequences. The single nucleotide polymorphism (SNP) sequence analysis using 79 pig genomes, representing 14 different breeds/populations, revealed that the Tas2r subset had higher variability (average π =2.8 × 10-3) than for non-bitter taste genes (π =1.2–1.5 × 10-3). In addition, our results show that the difference in nutrient receptor genes between Asian and European breeds accounts for only a small part of the variability, which is in contrast with previous findings involving genome wide data.ConclusionsWe have defined twenty-eight oral nutrient sensing related genes for the pig. The homology with the human repertoire is high for the porcine non-bitter taste gene repertoire and low for the porcine Tas2r repertoire. Our data suggests that bitter taste is a plastic trait, possibly associated with the ability of pigs to adapt to diverse environments and that may be subject to balancing selection.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-1057) contains supplementary material, which is available to authorized users.

Highlights

  • The oral G-Protein coupled receptor (GPCR) nutrient/taste receptor gene repertoire consists of the Family 1 taste receptor genes (Tas1rs) family, the Family 2 taste receptor genes (Tas2rs) family as well as several other potential candidate sensors of amino acids, peptones and fatty acids

  • Prediction of the porcine taste and nutrient receptor gene repertoire In order to identify the Nutrient sensing and taste receptor gene (Tasr) repertoire in the porcine genome, we carried out BLAST searches using known human (n =37) and mouse (n =47) mRNA sequences

  • The genes were grouped based on nutrient sensing: sugars (Tas1r2 and Tas1r3); amino acids and peptones (Tas1r1, Tas1r3, mGluR1, mGluR4, GPRC6A, CaSR and GPR92); fatty acids (GPR40, GPR41, GPR43, GPR84 and GPR120); and bitter compounds

Read more

Summary

Introduction

The oral GPCR nutrient/taste receptor gene repertoire consists of the Tas1r family (sweet and umami tastes), the Tas2r family (bitter taste) as well as several other potential candidate sensors of amino acids, peptones and fatty acids. These channels consist of tetrameric epithelial sodium channels (involving three genes ENaCα,β,γ) for salty; and dimeric hydrogen gated channels (involving two genes PKD1L3 and PKD2L1) for sour [9] Both multimeric transmembrane channels are quite ubiquitous and do not seem to be specific to sensory cells, have not been included in this study. The oral chemosensory gene repertoire can be potentially divided into those receptors identifying nutrients (e.g. sugars, amino acids and fatty acids) which in turn would elicit a positive hedonic sensation, and receptors responding to potential undesirable substances (e.g. plat-derived toxic compounds), which in turn would trigger a repulsive response (bitter)

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.