Abstract

As inhibitors of chitin synthase, nikkomycins have attracted interest as potential antibiotics. The biosynthetic pathway to these peptide nucleosides in Streptomyces tendae is only partially known. In order to elucidate the last step of the biosynthesis of the aminohexuronic building block, we have heterologously expressed a predicted aminotransferase encoded by the gene nikK from S. tendae in Escherichia coli. The purified protein, which is essential for nikkomycin biosynthesis, has a pyridoxal-5'-phosphate cofactor bound as a Schiff base to lysine 221. The enzyme possesses aminotransferase activity and uses several standard amino acids as amino group donors with a preference for glutamate (Glu > Phe > Trp > Ala > His > Met > Leu). Therefore, we propose that NikK catalyses the introduction of the amino group into the ketohexuronic acid precursor of nikkomycins. At neutral pH, the UV-visible absorbance spectrum of NikK has two absorbance maxima at 357 and 425 nm indicative of the presence of the deprotonated and protonated aldimine with an estimated pK(a) of 8.3. The rate of donor substrate deamination is faster at higher pH, indicating that an alkaline environment favours the deamination reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.