Abstract

The vibrational dynamics of Pt-H on a nanostructured platinum surface has been examined by ultrafast infrared spectroscopy. Three bands are observed at 1800, 2000, and 2090 cm-1, which are assigned to Pt-CO in a bridged and linear configuration and Pt-H, respectively. Lifetime analysis revealed a time constant of (0.8 ± 0.1) ps for the Pt-H mode, considerably shorter than that of Pt-CO because of its stronger coupling to the metal substrate. Two-dimensional attenuated total reflection infrared spectroscopy provided additional evidence for the assignment based on the anharmonic shift, which is large in the case of Pt-H (90 cm-1), in agreement with the density functional theory calculations. The absorption cross section of Pt-H is smaller than that of the very strong Pt-CO vibration by only a modest factor of ∼1.5-3. Because Pt-H is transiently involved in catalytic water splitting on Pt, the present spectroscopic characterization paves the way for in-operando kinetic studies of such reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call