Abstract

The regulation of parathyroid hormone secretion by the chief cells of the parathyroid is mediated by a 7-transmembrane (7-TM) Ca2+-sensing receptor (CaR), which signals via activation of pertussis toxin-insensitive G proteins, causing stimulation of phosphatidylinositol-specific phospholipase C (PI-PLC). We have identified the PI-PLC isoforms expressed in two model systems utilized for studying CaR signal transduction, i.e. dispersed bovine parathyroid cells and a human embryonic kidney cell line (HEK 293) stably transfected with the human parathyroid CaR-cDNA. All of the eight PI-PLC isozymes examined in this study were found to be expressed to varying extents in the bovine parathyroid gland and in the CaR-transfected HEK cells as assessed by immunoblotting. We localized the expression of the more abundant isozymes (beta1, beta2, beta3, gamma1, gamma2, delta2) to the chief cells of the bovine parathyroid by immunocytochemistry, while the two less abundant isozymes (delta1, beta4) were not detectable in parathyroid sections. G proteins activated by 7-TM receptors are known to activate mainly PI-PLC of the beta class. Therefore, beta1, beta2, beta3 and beta4, all expressed in the bovine parathyroid, are candidate isozymes for coupling to the CaR. A comparison of the levels of expression of PI-PLC isozymes between CaR-transfected HEK cells and non-transfected HEK cells suggested that the expression of the CaR in this human cell line does not cause a significant up-regulation of any of the PLCbeta and PLCgamma isozymes. PLCdelta2, showing predominantly nuclear localization in the parathyroid, was the sole PI-PLC isozyme with higher levels of expression in CaR-transfected HEK cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call