Abstract

The rise of drug-resistant bacteria is a major threat to public health, highlighting the urgent need for new antimicrobial compounds and treatments. Bacteriocins, which are ribosomally synthesized antimicrobial peptides produced by bacteria, hold promise as alternatives to conventional antibiotics. In this study, we identified and characterized a novel leaderless bacteriocin, bawcin, the first bacteriocin to be characterized from a Bacillus wiedmannii species. Chemically synthesized and purified bawcin was shown to be active against a broad range of Gram-positive bacteria, including foodborne pathogens Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes. Stability screening revealed that bawcin is stable over a wide range of pH (2.0–10.0), temperature conditions (25–100 °C), and against the proteases, papain and pepsin. Lastly, three-dimensional structure homology modeling suggests that bawcin contains a saposin-fold with amphipathic helices and a highly cationic surface that may be critical for membrane interaction and the subsequent cell death of its targets. This study provides the foundational understanding of the activity and properties of bawcin, offering valuable insights into its applications across different antimicrobial uses, including as a natural preservative in food and livestock industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call