Abstract

The extracellular domain of human EGF receptor (sEGFR) produced by CHO cells has been used in various biophysical studies to elucidate the molecular mechanism of EGF-induced receptor activation. We have found that the CHO sEGFR contains one oligosaccharide chain attached to an atypical N-glycosylation consensus sequence, Asn(32 )-X( 33 )-Cys(34 ). The oligosaccharide structure at Asn(32 ) is a mixture of the monosialo and asialo forms of a core fucosylated biantennary complex-type oligosaccharide. Deletion of this atypical glycosylation site by replacement of Asn(32 ) with lysine changed neither the expression nor function of the full length EGFR in CHO cells. The glycosylation at Asn(32 ) in CHO sEGFR was incomplete: 20% of Asn(32 ) remained unmodified. Thus, CHO sEGFR itself is heterogeneous with respect to the glycosylation at Asn(32 ), which may cause problems in biophysical studies. An attempt to remove the oligosaccharide at Asn(32 ) enzymatically did not succeed under nondenaturing conditions. Therefore, sEGFR with the mutation of Asn(32) -> Lys(32 )is useful for biophysical and biochemical studies, and, particularly, for X-ray crystallography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.