Abstract

A silicon (Si) surface with a nanosized porous structure was formed via simple wet chemical etching catalyzed by gold (Au) nanoparticles on p-type Cz-Si (100). The average reflectivity from 300 to 1200 nm was less than 1.5%. Black Si solar cells were then fabricated using a conventional production process. The results reflected the output characteristics of the cells fabricated using different etching depths and emitter dopant profiles. Heavier dopants and shallower etching depths should be adopted to optimize the black Si solar cell output characteristics. The efficiency at the optimized etching time and dopant profile was 12.17%. However, surface passivation and electrode contact due to the nanosized porous surface structure are still obstacles to obtaining high conversion efficiency for the black Si solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call